Author: Maureen Grady

Situations Project

Situation A:

Prompt: In a high school pre-calculus class students were learning to evaluate limits. Given the problem $\lim_{x \to \infty} \left(\frac{1}{x} \cdot 2^x\right)$, a student concluded that the limit must be 0 because $\lim_{x \to \infty} \left(\frac{1}{x}\right)$ was equal to zero and zero times anything was equal to zero.

Focus 1: The theorem $\frac{\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} (f(x)) \cdot \lim_{x \to a} (g(x)) \text{ applies only}}{x \to a}$ when $\frac{\lim_{x \to a} (f(x))}{x \to a} (g(x)) \text{ and } \lim_{x \to a} (g(x)) \text{ exist. In this case the theorem does not apply}}{x \to a}$ since $\frac{\lim_{x \to \infty} (2^x)}{x \to \infty} (2^x) \text{ does not exist.}}$

Focus 2: A graphing calculator can be used to explore this problem both by examining the graph of the function $f(x) = \left(\frac{1}{x} \cdot 2^x\right)$ as x goes to infinity and by examining the behaviors of the two functions $f(x) = \left(\frac{1}{x}\right)$ and $g(x) = \left(2^x\right)$. This limit can be explored numerically by using the tables of values generated for the two functions.

Situation B:

Prompt: A student new to using graphing calculators was using one to generate ordered pairs for the equation $y = x^2 + 1$. He generated the points: (2, 5), (1, 2), (0, 1), (-1, 0), (-2, -3).

Focus 1: It is important to understand why -2^2 and $(-2)^2$ are not equivalent expressions.

Focus 2: It is important for students and teachers to recognize the limitations and idiosyncrasies of the technology that they use. Different calculators handle expressions like -2^2 in different ways. Most scientific calculators will evaluate it as 4 while most graphing calculators will evaluate it as -4.