Situations Project

Situation A:
Prompt: In a high school pre-calculus class students were learning to evaluate limits. Given the problem $\lim _{x \rightarrow \infty}\left(\frac{1}{x} \cdot 2^{x}\right)$, a student concluded that the limit must be 0 because $\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)$ was equal to zero and zero times anything was equal to zero.

Focus 1: The theorem $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a}(f(x)) \cdot \lim _{x \rightarrow a}(g(x))$ applies only when $\lim _{x \rightarrow a}(f(x))$ and $\lim _{x \rightarrow a}(g(x))$ exist. In this case the theorem does not apply since $\lim _{x \rightarrow \infty}\left(2^{x}\right)$ does not exist.

Focus 2: A graphing calculator can be used to explore this problem both by examining the graph of the function $f(x)=\left(\frac{1}{x} \cdot 2^{x}\right)$ as x goes to infinity and by examining the behaviors of the two functions $f(x)=\left(\frac{1}{x}\right)$ and $g(x)=\left(2^{x}\right)$. This limit can be explored numerically by using the tables of values generated for the two functions.

Situation B:
Prompt: A student new to using graphing calculators was using one to generate ordered pairs for the equation $y=x^{2}+1$. He generated the points: $(2,5),(1,2),(0,1),(-1,0),(-$ $2,-3$).

Focus 1: It is important to understand why -2^{2} and $(-2)^{2}$ are not equivalent expressions.
Focus 2: It is important for students and teachers to recognize the limitations and idiosyncrasies of the technology that they use. Different calculators handle expressions like -2^{2} in different ways. Most scientific calculators will evaluate it as 4 while most graphing calculators will evaluate it as -4 .

